Abstract

Small fixed-wing unmanned aerial vehicles (SUAVs) present an enormous potential for low-altitude exploration applications. In order to develop a robotic SUAV with high level of autonomy for disaster information gathering, the flight control and navigation system is presented and the hardware and software are detailed. Then the dynamic model of flight motion of SUAV is studied. As the kernel of the system, the architecture of flight control and navigation strategies are presented, then variable universe fuzzy attitude controller and mission path tracking controller are introduced in detail. The flight experiments for low altitude information gathering using this robotic SUAV are implemented and the flight results are given and analysed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call