Abstract

Machine Learning techniques have been useful in almost every field of concern. Data Mining, a branch of Machine Learning is one of the most extensively used techniques. The ever-increasing demands in the field of medicine are being addressed by computational approaches in which Big Data analysis, image processing and data mining are on top priority. These techniques have been exploited in the domain of ophthalmology for better retinal fundus image analysis. Blood vessels, one of the most significant retinal anatomical structures are analysed for diagnosis of many diseases like retinopathy, occlusion and many other vision threatening diseases. Vessel segmentation can also be a pre-processing step for segmentation of other retinal structures like optic disc, fovea, microneurysms, etc. In this paper, blood vessel segmentation is attempted through image processing and data mining techniques. The retinal blood vessels were segmented through color space conversion and color channel extraction, image pre-processing, Gabor filtering, image post-processing, feature construction through application of principal component analysis, k-means clustering and first level classification using Naïve–Bayes classification algorithm and second level classification using C4.5 enhanced with bagging techniques. Association of every pixel against the feature vector necessitates Big Data analysis. The proposed methodology was evaluated on a publicly available database, STARE. The results reported 95.05% accuracy on entire dataset; however the accuracy was 95.20% on normal images and 94.89% on pathological images. A comparison of these results with the existing methodologies is also reported. This methodology can help ophthalmologists in better and faster analysis and hence early treatment to the patients.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.