Abstract
Skin cancers are the most common cancers with an increased incidence, and a valid, early diagnosis may significantly reduce its morbidity and mortality. Reflectance confocal microscopy (RCM) is a relatively new, non-invasive imaging technique that allows screening lesions at a cellular resolution. However, one of the main disadvantages of the RCM is frequently occurring artifacts which makes the diagnostic process more time consuming and hard to automate using e.g. end-to-end deep learning approach. A tool to automatically determine the RCM mosaic quality could be beneficial for both the lesion classification and informing the user (dermatologist) about its quality in real-time, during the examination procedure. In this work, we propose an attention-based deep network to automatically determine if a given RCM mosaic has an acceptable quality. We achieved accuracy above 87% on the test set which may considerably improve further classification results and the RCM-based examination.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have