Abstract

Accurate quantification of myocardium strain in magnetic resonance images is important to correctly diagnose and monitor cardiac diseases. Currently, available methods to estimate motion are based on tracking brightness pattern differences between images. In cine-MR images, the myocardium interior presents an inhered homogeneity, which reduces the accuracy in estimated motion, and consequently strain. Neural networks have recently been shown to be an important tool for a variety of applications, including motion estimation. In this work, we investigate the feasibility of quantifying myocardium strain in cardiac resonance synthetic images using motion generated by a compact and powerful network called Pyramid, Warping, and Cost Volume (PWC). Using the motion generated by the neural network, the radial myocardium strain obtained presents a mean average error of 12.30% +- 6.50%, and in the circumferential direction 1.20% +-0.61 %, better than the two classical methods evaluated. Clinical Relevance- This work demonstrates the feasibility of estimating myocardium strain using motion estimated by a convolutional neural network.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.