Abstract

3D ultrasound (US) imaging has the potential to become a powerful alternative imaging modality in orthopaedic surgery as it is radiation-free and can produce 3D images (in contrast to fluoroscopy) in near-real time. Conventional B-mode US images, however, are characterized by high levels of noise and reverberation artifacts, image quality is user-dependent, and bone surfaces are blurred, which makes it difficult to both interpret images and to use them as a basis for navigated interventions. 3D US has great potential to assist orthopaedic care, possibly assisting during surgery if the anatomical structures of interest could be localized and visualized with sufficient accuracy and clarity and in a highly automated rapid manner. In this paper, we present clinical results for a novel 3D US segmentation technique we have recently developed based on multi-resolution analysis to localize bone surfaces in 3D US volumes. Our method is validated on scans obtained from 29 trauma patients with distal radius and pelvic ring fractures. Qualitative and quantitative results demonstrate remarkably clear segmentations of bone surfaces with an average surface fitting error of 0.62 mm (standard deviation (SD) of 0.42 mm) for pelvic patients and 0.21 mm (SD 0.14 mm) for distal radius patients. These results suggest that our technique is sufficiently accurate for potential use in orthopaedic trauma applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call