Abstract

The objective of this study was to develop a computational algorithm capable of locating artifacts and identifying epileptic seizures, which specifically implementing in clinical stereoelectroencephalography (SEEG) recordings. Based on the nonstationary nature and broadband features of SEEG signals, a comprehensive strategy combined with the complex wavelet transform (CWT) and multi-layer thresholding method was implemented for both noise reduction and seizure detection. The artifacts removal pipeline integrated edge artifact removal, discrete spectrum analysis, and peak density evaluation. For automatic seizure detection, integrated power analysis and multi-dynamic thresholding were applied. The F1score was applied to evaluate overall performance of the algorithm. The algorithm was tested using expert-marked, double-blinded, clinical SEEG data from seven patients undergoing presurgical evaluation. This approach achieved the F1 score of 0.86 for noise reduction and 0.88 for seizure detection. This offline-approach method with minimum parameter tuning procedures and no prior information required, proved to be a feasible and solid solution for clinical SEEG data evaluation. Moreover, the algorithm can be improved with additional tuning and implemented with machine learning postprocessing pipelines.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.