Abstract

Dysarthria is a speech disorder that affects the ability to communicate due to articulation difficulties. This research proposes a novel method for automatic dysarthria detection (ADD) and automatic dysarthria severity level assessment (ADSLA) by using a variable continuous wavelet transform (CWT) layered convolutional neural network (CNN) model. To determine their efficiency, the proposed model is assessed using two distinct corpora, TORGO and UA-Speech, comprising both dysarthria patients and healthy subject speech signals. The research study explores the effectiveness of CWT-layered CNN models that employ different wavelets such as Amor, Morse, and Bump. The study aims to analyze the models’ performance without the need for feature extraction, which could provide deeper insights into the effectiveness of the models in processing complex data. Also, raw waveform modeling preserves the original signal’s integrity and nuance, making it ideal for applications like speech recognition, signal processing, and image processing. Extensive analysis and experimentation have revealed that the Amor wavelet surpasses the Morse and Bump wavelets in accurately representing signal characteristics. The Amor wavelet outperforms the others in terms of signal reconstruction fidelity, noise suppression capabilities, and feature extraction accuracy. The proposed CWT-layered CNN model emphasizes the importance of selecting the appropriate wavelet for signal-processing tasks. The Amor wavelet is a reliable and precise choice for applications. The UA-Speech dataset is crucial for more accurate dysarthria classification. Advanced deep learning techniques can simplify early intervention measures and expedite the diagnosis process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.