Abstract
To develop a convolutional neural network (CNN) model for the automatic detection and classification of rib fractures in actual clinical practice based on cross-modal data (clinical information and CT images). In this retrospective study, CT images and clinical information (age, sex and medical history) from 1020 participants were collected and divided into a single-centre training set (n = 760; age: 55.8 ± 13.4years; men: 500), a single-centre testing set (n = 134; age: 53.1 ± 14.3years; men: 90), and two independent multicentre testing sets from two different hospitals (n = 62, age: 57.97 ± 11.88, men: 41; n = 64, age: 57.40 ± 13.36, men: 35). A Faster Region-based CNN (Faster R-CNN) model was applied to integrate CT images and clinical information. Then, a result merging technique was used to convert 2D inferences into 3D lesion results. The diagnostic performance was assessed on the basis of the receiver operating characteristic (ROC) curve, free-response ROC (fROC) curve, precision, recall (sensitivity), F1-score, and diagnosis time. The classification performance was evaluated in terms of the area under the ROC curve (AUC), sensitivity, and specificity. The CNN model showed improved performance on fresh, healing, and old fractures and yielded good classification performance for all three categories when both clinical information and CT images were used compared to the use of CT images alone. Compared with experienced radiologists, the CNN model achieved higher sensitivity (mean sensitivity: 0.95 > 0.77, 0.89 > 0.61 and 0.80 > 0.55), comparable precision (mean precision: 0.91 > 0.87, 0.84 > 0.77, and 0.95 > 0.70), and a shorter diagnosis time (average reduction of 126.15s). A CNN model combining CT images and clinical information can automatically detect and classify rib fractures with good performance and feasibility in actual clinical practice. • The developed convolutional neural network (CNN) performed better in fresh, healing, and old fractures and yielded a good classification performance in three categories, if both (clinical information and CT images) were used compared to CT images alone. • The CNN model had a higher sensitivity and matched precision in three categoriesthan experienced radiologists with a shorter diagnosis time in actual clinical practice.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have