Abstract

Automatic inspection of micro-defects of thin film transistor-liquid crystal display (TFT-LCD) panels is a critical task in LCD manufacturing. To meet the practical demand of online inspection of a one-dimensional (1D) line image captured by the line scan visual system, we propose a robust 1D Fourier reconstruction method with the capability of automatic determination of the period Δx of the periodic pattern of a spatial domain line image and the neighboring length r of the frequency peaks of the corresponding frequency domain line image. Moreover, to alleviate the difficulty in the discrimination between the defects and the non-uniform illumination background, we present an effective way to correct the non-uniform background using robust locally weighted smoothing combined with polynomial curve fitting. As a proof-of-concept, we built a line scan visual system and tested the captured line images. The results reveal that the proposed method is able to correct the non-uniform illumination background in a proper way that does not cause false alarms in defect inspection but also preserves complete information about the defects in terms of the brightness and darkness as well as the shape, indicating its distinct advantage in defect inspection of TFT-LCD panels.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call