Abstract

Surface defect inspection of TFT-LCD panels is a critical task in LCD manufacturing. In this paper, an automatic defect inspection method based on the low-rank matrix reconstruction is proposed. The textured background of the LCD image is a low-rank matrix and the foreground image with defects can be treated as a sparse matrix. By utilizing the Inexact Augmented Lagrange Multipliers (IALM) algorithm, the segmentation of a LCD image can be converted into the reconstruction of a low-rank matrix with a fraction of its entries arbitrarily corrupted. This low-rank matrix reconstruction problem can be exactly solved via convex optimization that minimizes a combination of the nuclear norm and the l 1 -norm. Also, adaptive parameter selection strategy is proposed by conducting deep analysis on the IALM algorithm, which improves the generality of the IALM algorithm for different defect types. Experiment results show that our inspection algorithm is robust for the defect shapes and types under different illumination conditions. The shapes and edges of defect areas in the LCD images can be well preserved and segmented from textured background by our detection algorithm.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call