Abstract

The accuracy of the Cobb measurement is essential for the diagnosis and treatment of scoliosis. Manual measurement is however influenced by the observer variability hence affecting progression evaluation. In this paper, we propose a fully automatic Cobb measurement method to address the accuracy issue of manual measurement. We improve the U-shaped network based on the multi-scale feature fusion to segment each vertebra. To enable multi-scale feature extraction, the convolution kernel of the U-shaped network is substituted by the Inception Block. To solve the problem of gradient disappearance caused by the widening of the network structure from the Inception Block, we propose using ResBlock. CBAM (Convolutional Block Attention Module) can help the network judges the importance of the feature map to modify learning weight. Also, to further enhance the accuracy of feature extraction, we add the CBAM to the U-shaped network bottleneck. Finally, based on the segmented vertebrae, the efficient automatic Cobb angle measurement method is proposed to estimate the Cobb angle. In the experiments, 75 spinal X-ray images are tested. We compare the proposed U-Shaped network with the state-of-the-art methods including DeepLabV3 + , FCN8S, SegNet, U-Net, U-Net + + , BASNet, and U2Net for vertebra segmentation. Our results show that compared to these methods, the Dice coefficient is improved by 32.03%, 33.58%, 12.42%, 5.65%, 4.55%, 4.42%, and 3.27%, respectively. The CMAE of the calculated Cobb measurement is 2.45°, which is lower than the average error of 5-7° of manual measurement. The experimental results indicate that the improved U-shaped network improves the accuracy of vertebra segmentation. The proposed efficient automatic Cobb measurement method can be used in clinics to reduce observer variability.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.