Abstract

Cardiovascular diseases (CVDs) are a group of heart and blood vessel ailments that can cause chest pain and trouble breathing, especially while active. However, some patients with heart disease have no symptoms and may benefit from screening. Electrocardiogram(ECG) measures electrical activity of the heart using sensors positioned on the skin over the chest, and it can be used for the timely detection of CVDs. This work presents a technique for classification among lethal CVDs like atrial fibrillation (Afib), ventricular fibrillation (Vfib), ventricular tachycardia (Vtec), and normal (N) beats. A novel combination of Stationary wavelet transforms (SWT) and a two-stage median filter with Savitzky–Golay(SG) filter were utilised for pre-processing of the ECG signal followed by segmentation and z-score normalisation process. Next, 1-D six-layers convolutional neural network (1-D CNN) was used for automated and reliable feature extraction. After that, bidirectional long short-term memory (Bi-LSTM) was used in the back end for classification of arrhythmias. The novelty of the present work is the use of 1-D CNN and Bi-LSTM architecture followed by relevant and effective pre-processing of the ECG signal makes this technique accurate and reliable. An accuracy of 99.41 % was achieved using 10-fold cross validation, which is superior to the existing state-of-art methods. Thus, this method presents a noble, accurate, and reliable method for classification of cardiac arrhythmia beats.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.