Abstract

Higher penetration of renewable and smart home technologies at the residential level challenges grid stability as utility-customer interactions add complexity to power system operations. In response, short-term residential load forecasting has become an increasing area of focus. However, forecasting at the residential level is challenging due to the higher uncertainties involved. Recently deep neural networks have been leveraged to address this issue. This paper investigates the capabilities of a bidirectional long short-term memory (BiLSTM) and a convolutional neural network-based BiLSTM (CNN-BiLSTM) to provide a day ahead (24 hr.) forecasting at an hourly resolution while minimizing the root mean squared error (RMSE) between the actual and predicted load demand. Using a publicly available dataset consisting of 34 homes, the BiLSTM and CNN-BiLSTM models are trained to forecast the aggregated active power demand for each hour within a 24 hr. span, given the previous 24 hr. load data. The BiLSTM model achieved the lowest RMSE of 1.4842 for the overall daily forecast. In addition, standard LSTM and CNN-LSTM models are trained and compared with the BiLSTM architecture. The RMSE of BiLSTM is 5.60%, 2.85% and 2.60% lower than LSTM, CNN-LSTM and CNN-BiLSTM models respectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.