Abstract

Traumatic brain injury is a serious public health problem in the U.S. contributing to a large portion of permanent disability. However, its early management and treatment could limit the impact of the injury, save lives and reduce the burden of cost for patients as well as healthcare systems. Subdural hematoma is one of the most common types of TBI, which its visual detection and quantitative evaluation are time consuming and prone to error. In this study, we propose a fully auto-mated machine learning based approach for 3D segmentation of convexity subdural hematomas. Textural, statistical and geometrical features of sample points from intracranial region are extracted based on head Computed Tomography (CT) images. Then, a tree bagger classifier is implemented to classify each pixel as hematoma or no-hematoma. Our method yields sensitivity, specificity and area under the receiver operating curve (AUC) of 85:02%, 73:74% and 0:87 respectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.