Abstract
The segmentation of skin lesions in dermoscopic images is considered as one of the most important steps in computer-aided diagnosis (CAD) for automated melanoma diagnosis. Existing methods, however, have problems with over-segmentation and do not perform well when the contrast between the lesion and its surrounding skin is low. Hence, in this study, we propose a new automated saliency-based skin lesion segmentation (SSLS) that we designed to exploit the inherent properties of dermoscopic images, which have a focal central region and subtle contrast discrimination with the surrounding regions. The proposed method was evaluated on a public dataset of lesional dermoscopic images and was compared to established methods for lesion segmentation that included adaptive thresholding, Chan-based level set and seeded region growing. Our results show that SSLS outperformed the other methods in regard to accuracy and robustness, in particular, for difficult cases.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.