Abstract
One of the biggest challenges the world face today is the mortality due to Cancer. One in four of all diagnosed cancers involve the lung cancer, where the mortality rate is high, even after so much of technical and medical advances. Most lung cancer cases are diagnosed either in the third or fourth stage, when the disease is not treatable. The main reason for the highest mortality, due to lung cancer is because of non availability of prescreening system which can analyze the cancer cells at early stages. So it is necessary to develop a prescreening system which helps doctors to find and detect lung cancer at early stages. Out of all various types of lung cancers, adenocarcinoma is increasing at an alarming rate. The reason is mainly attributed to the increased rate of smoking - both active and passive. In the present work, a system for the classification of lung glandular cells for early detection of Cancer using multiple color spaces is developed. For segmentation, various clustering techniques like K-Means clustering and Fuzzy C-Means clustering on various Color spaces such as HSV, CIELAB, CIEXYy and CIELUV are used. Features are Extracted and classified using Support Vector Machine (SVM).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.