Abstract
Objectives Impaired image quality and long scan times frequently occur in respiratory-triggered sequences in liver magnetic resonance imaging (MRI). We evaluated the impact of an in-bore active breathing guidance (BG) application on image quality and scan time of respiratory-triggered T2-weighted (T2) and diffusion-weighted imaging (DWI) by comparing sequences with standard triggering (T2S and DWIS) and with BG (T2BG and DWIBG). Materials and Methods In this prospective study, random patients with clinical indications for liver MRI underwent 3 T MRI with standard and BG acquisitions. The audiovisual BG application received the respiratory signal from the scanner, and animated breathing instructions were displayed using a mirror and screen behind the MRI bore. Prior to the DWIBG and T2BG acquisition, patients received a short video instruction about MRI with BG. Suitable parameters for desired breathing pattern for T2BG and DWIBG were set individually for each patient based on the patient's physical respiratory ability (ie, 4 seconds breathing followed by 4.5 seconds breath holding). Artifacts, sharpness, lesion conspicuity, and overall image quality were assessed using a Likert scale from 1 (nondiagnostic) to 5 (excellent). Scan time, apparent contrast-to-noise ratio, and apparent signal-to-noise ratio (aSNR) for all sequences were analyzed. Paired t test and Wilcoxon test were used for statistical analysis. Results Thirty-two patients (mean age: 55 ± 13 years, 13 female) were included. T2BG showed less artifacts (4.5 ± 0.7 vs 4.1 ± 0.8, P < 0.001) and better sharpness, lesion conspicuity, and overall image quality (eg, overall image quality 4.6 ± 0.7 vs 4.4 ± 0.7, P = 0.004) compared with T2S. DWIBG demonstrated improved image quality in all categories compared with DWIS (eg, overall image quality 4.5 ± 0.5 vs 4.3 ± 0.5, P = 0.005) and less artifacts (4.1 ± 0.5 vs 3.8 ± 0.7, P = 0.007). Scan times of T2BG (286 ± 23 vs 345 ± 68 seconds, P < 0.001) and DWIBG (160 ± 4 vs 252 ± 70 seconds, P < 0.001) were reduced by 17% and 37%, respectively. aSNR and apparent contrast-to-noise ratio (eg, aSNR: 23.45 ± 11.31 [T2BG] vs 25.84 ± 10.76 [T2S]; P = 0.079) were similar for both sequences for both approaches. Conclusions Active BG for respiratory-triggered liver T2w and DWI sequences led to significant reduction of breathing artifacts, improved image quality, and shorter scan time compared with standard acquisitions.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have