Abstract

Advancements in generative artificial intelligence have made it easier to manipulate auditory and visual elements, highlighting the critical need for robust audio–visual deepfake detection methods. In this paper, we propose an articulatory representation-based audio–visual deepfake detection approach, ART-AVDF. First, we devise an audio encoder to extract articulatory features that capture the physical significance of articulation movement, integrating with a lip encoder to explore audio–visual articulatory correspondences in a self-supervised learning manner. Then, we design a multimodal joint fusion module to further explore inherent audio–visual consistency using the articulatory embeddings. Extensive experiments on the DFDC, FakeAVCeleb, and DefakeAVMiT datasets demonstrate that ART-AVDF obtains a significant performance improvement compared to many deepfake detection models.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.