Abstract

Facial Landmark Detection (FLD) algorithms play a crucial role in numerous computer vision applications, particularly in tasks such as face recognition, head pose estimation, and facial expression analysis. While FLD on images has long been the focus, the emergence of 3D data has led to a surge of interest in FLD on it due to its potential applications in various fields, including medical research. However, automating FLD in this context presents significant challenges, such as selecting suitable network architectures, refining outputs for precise landmark localization and optimizing computational efficiency. In response, this paper presents a novel approach, the 2-Stage Stratified Graph Convolutional Network (2S-SGCN), which addresses these challenges comprehensively. The first stage aims to detect landmark regions using heatmap regression, which leverages both local and long-range dependencies through a stratified approach. In the second stage, 3D landmarks are precisely determined using a new post-processing technique, namely MSE-over-mesh. 2S-SGCN ensures both efficiency and suitability for resource-constrained devices. Experimental results on 3D scans from the public Facescape and Headspace datasets, as well as on point clouds derived from FLAME meshes collected in the DAD-3DHeads dataset, demonstrate that the proposed method achieves state-of-the-art performance across various conditions. Source code is accessible at https://github.com/gfacchi-dev/CVIU-2S-SGCN.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.