Abstract
Recent advances in Generative Artificial Intelligence (AI) have increased the possibility of generating hyper-realistic DeepFake videos or images to cause serious harm to vulnerable children, individuals, and society at large with misinformation. To overcome this serious problem, many researchers have attempted to detect DeepFakes using advanced machine learning techniques and advanced fusion techniques. This paper presents a detailed review of past and present DeepFake detection methods with a particular focus on media-modality fusion and machine learning. This paper also provides detailed information on available benchmark datasets in DeepFake detection research. This review paper addressed the 67 primary papers that were published between 2015 and 2023 in DeepFake detection, including 55 research papers in image and video DeepFake detection methodologies and 15 research papers on identifying and verifying speaker authentication. This paper offers lucrative information on DeepFake detection research and offers a unique review analysis of advanced machine learning and modality fusion that sets it apart from other review papers. This paper further offers informed guidelines for future work in DeepFake detection utilizing advanced state-of-the-art machine learning and information fusion models that should support further advancement in DeepFake detection for a sustainable and safer digital future.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.