Abstract

We report an in situ study of the thin-film growth of cobalt-phthalocyanine on Ag(100) surfaces using photoelectron emission microscopy (PEEM) and the Anderson method. Based on the Fowler–DuBridge theory, we were able to correlate the evolution of the mean electron yield acquired with PEEM for coverages up to two molecular layers of cobalt-phthalocyanine to the global work function changes measured with the Anderson method. For coverages above two monolayers, the transients measured with the Anderson method and those obtained with PEEM show different trends. We exploit this discrepancy to determine the inelastic mean free path of the low-energy electrons while passing through the third layer of CoPc.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.