Abstract

Nanofinishing or polishing helps to reduce surface roughness, which further improves both the optical and chemical properties of engineering materials. During the polishing of any engineering material, the size of abrasive particles plays a significant role in efficient polishing. In this paper, stainless steel 304 (or SS304) is selected for polishing through diamond abrasives with varying particle sizes using molecular dynamics simulations (MDS). It is found that the diamond abrasive particle initially causes elastic deformation due to the attractive force between the abrasive particle and the workpiece surface. As the size of the abrasive particle increases, plastic deformation occurs by spreading the dislocations on the surface only, which helps to annihilate the dislocations after polishing. It is revealed that the smaller abrasive particles (<3 nm) get trapped due to strong chemical bonding with the surface of the workpiece, and the abrasive particles start depositing on the workpiece instead of material removal. In this paper, it is proposed that an optimum size of abrasive particles is required for a given set of polishing parameters to achieve efficient material removal and minimum surface and subsurface defects. Thus, the present study is worthwhile for efficient polishing or nanocutting of stainless steel through monocrystalline diamond.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call