Abstract
Kagome metals AV_{3}Sb_{5} (A=K, Rb, or Cs) exhibit intriguing charge density wave (CDW) instabilities, which interplay with superconductivity and band topology. However, despite firm observations, the atomistic origins of the CDW phases, as well as hidden instabilities, remain elusive. Here, we adopt our newly developed symmetry-adapted cluster expansion method to construct a first-principles-based effective Hamiltonian of CsV_{3}Sb_{5}, which not only reproduces the established inverse star of David (ISD) phase, but also predict a series of D_{3h}-n states under mild tensile strains. With such atomistic Hamiltonians, the microscopic origins of different CDW states are revealed as the competition of the second-nearest neighbor V-V pairs versus the first-nearest neighbor V-V and V-Sb couplings. Interestingly, the effective Hamiltonians also reveal the existence of ionic Dzyaloshinskii-Moriya interaction in the high-symmetry phase of CsV_{3}Sb_{5} and drives the formation of noncollinear CDW patterns. Our work thus not only deepens the understanding of the CDW formation in AV_{3}Sb_{5}, but also demonstrates that the effective Hamiltonian is a suitable approach for investigating CDW mechanisms, which can be extended to various CDW systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.