Abstract

The Field Effect Transistor (FET) characteristics has been observed from a single-walled Adenine nanotube device using Density Functional Theory associated with Non Equilibrium Green’s Function based First Principle approach. This device is electrically doped which shows both n and p channel characteristics of a p-i-n FET. This device is designed and originated from a single-walled biomolecular nanotube structure. The p and n regions have been induced at the two ends of the device using electrical doping process. Thus both n and p channel current-voltage response can be obtained within a single nano-scale device at room temperature operation. The device is 3.35nm long and 1.4nm wide. The quasi-ballistic quantum transmission property reveals impressive and almost ideal current-voltage characteristics of the FET. Highest Occupied Molecular Orbital (HOMO) and Lowest Unoccupied Molecular Orbital (LUMO) gap reveals the possibility of quasi-ballistic coherent transmission of the device. The electronic properties based on Molecular Projected Self-consistent Hamiltonian are analyzed using Hilbert space spanned basis functions. The maximum tunneling current observed for the bio-molecular FET is 15.9μA for n-channel and 13.8μA for p-channel. The device is operated in atomic scale regime with 1000THz frequency. The present results reveal the role of quantum-ballistic tunneling phenomenon in the current-voltage characteristics and channel conductance properties of the bio nanotube structure, which is useful in future generation nano-electronics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call