Abstract
We report the detailed mechanism behind the β to γ phase transformation in Sn-doped and Si-implanted Ga2O3 that we determined based on the direct observation of the atomic scale structure using scanning transmission electron microscopy (STEM). Quantitative analysis of the STEM images revealed that the high concentration of impurity atoms favored the formation of interstitial–divacancy complexes, which then leads to the secondary relaxation that creates additional interstitial atoms and cation vacancies, resulting in a local structure that closely resembles γ-Ga2O3. We explain the mechanism of how the impurity atoms facilitate the transformation, as well as the detailed sequence of the local γ phase transformation. The findings here offer an insight on how the lattice respond to the external stimuli, such as doping and strain, and transform into different structures, which is important for advancing Ga2O3 but also a variety of low symmetry crystals and oxides with multiple polymorphs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.