Abstract

Recent advances in theoretical methods and high performance computing allow for reliable first-principles predictions of complex nanostructured materials and devices. This paper describes three examples: (i) non-equilibrium electron transport through molecular junctions, as a stepping stone for the design of molecular-scale devices and for integration of biomolecules with Si technology; (ii) polarization and piezoelectric properties of PVDF and related polymers; and (iii) the many-body optical spectrum of water. For the molecular junction, our results provide a qualitative picture and quantitative understanding of the mechanism leading to negative differential resistance for a large class of small molecules. For ferroelectric polymers, the calculations show that their polarization is described by cooperative, quantum-mechanical interactions between polymer chains. Nevertheless, the ab initio results lead to a simple parameterization of polarization as a function of copolymer concentration. Finally, our calculations explain the well-known redshift in the fundamental absorption of water as due to exciton delocalization upon aggregation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call