Abstract

Metal-oxygen bonds are responsible for a broad spectrum of functional properties of transition-metal oxides, and engineering the bonds is a key for exploring their properties. Artificial oxide heterostructures with chemically abrupt interfaces have provided a platform for engineering bonding geometries that could lead to emergent phenomena not seen in bulk oxides. In this paper, we demonstrate that interfacially engineering oxygen displacement is a good route for exploring structural and functional properties of oxides. Our high-resolution annular bright-field scanning transmission electron microscopy observations revealed that interfacial oxygen displacement determines metal-oxygen bond angles in entire heterostructures and the magnitude of the displacements can be adjusted by controlling propagations of the oxygen octahedral rotations across the heterointerface. We also show that by heterostructuring an itinerant ferromagnet SrRuO3 with Ca0.5Sr0.5TiO3 (0–4 monolayers thick) grown on a GdScO3 substrate, structural phase and magnetic anisotropy of SrRuO3 can be controlled through the interfacial engineering of its oxygen displacement.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.