Abstract
Reductions in bright-field (BF) scanning transmission electron microscopy (STEM) and high-angle annular dark-field (HAADF) STEM image calculations with the aid of Bloch wave symmetry are discussed under assumptions that an absorption potential is written by a local potential and a zero-order Laue zone lies parallel to the crystal surface. Translational symmetry allows us to take only partial incident beams in the first Brillouin zone instead of enormous number of partial incident beams in a large convergent disk. Two dimensional point group confines partial incident beams to an irreducible area in addition to factoring a dispersion matrix into noninteracting submatrices on a high symmetry line using the projection operator. The drastic reductions in computing time and memory enable us to readily calculate various BF STEM and HAADF STEM images. The validity and accuracy are demonstrated in comparisons with high resolution experimental BF STEM and HAADF STEM images.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.