Abstract
AbstractThe application of a heteroleptic hafnium amide‐guanidinate precursor for the deposition of HfO2 thin films via a water‐assisted atomic layer deposition (ALD) process is demonstrated for the first time. HfO2 films are grown in the temperature range 100–300 °C using the compound [Hf(NMe2)2(NMe2‐Guan)2] (1). This compound shows self‐limiting ALD‐type growth characteristics with growth rates of the order of 1.0–1.2 Å per cycle in the temperature range 100–225 °C. The saturation behavior and a linear dependence on film thickness as a function of number of cycles are verified at various temperatures within the ALD window. The as‐deposited HfO2 films are characterized by atomic force microscopy (AFM), scanning electron microscopy (SEM), Rutherford backscattering spectroscopy (RBS), X‐ray photoelectron spectroscopy (XPS), and electrical measurements. For a direct comparison of the precursor performance with that of the parent alkyl amide [Hf(NMe2)4] (2), ALD experiments are also performed employing compound 2 under similar process conditions, and in this case no typical ALD characteristics are observed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.