Abstract

Herein, stable resistive switching characteristics are demonstrated in an atomic-layer-deposited SiOX-based resistive memory device. The thickness and chemical properties of the Pt/SiOX/TaN stack are verified by transmission electron microscopy (TEM) and X-ray photoemission spectroscopy (XPS). It is demonstrated that much better resistive switching is obtained using a negative set and positive reset compared to the opposite polarity. In addition, multi-level switching is demonstrated by changing the compliance current (CC) and the reset stop voltage, and potentiation and depression are emulated by applying pulses to achieve a synaptic device. Finally, a pulse endurance of 10,000 cycles and a retention time of 5000 s are confirmed by modulating the pulse input and reading voltage, respectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call