Abstract

We propose two interferometric schemes to experimentally detect in real space the onset of pair condensation in a two-spin-component Fermi gas. Two atomic wave packets are coherently extracted from the gas at different positions and are mixed by a matter-wave beam splitter: we show that the spatial long-range order of the atomic pairs in the gas reflects in the atom counting statistics in the beam splitter output channels. The same long-range order is also shown to create a matter-wave grating in the overlapping region of the two extracted wave packets, grating that can be revealed by a light-scattering experiment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.