Abstract

AbstractIn this study, we explored thin films of nanofibrous functionalised conducting plasma polyaniline (pPANI) with platinum deposited by an atmospheric plasma deposition process for the potential design of anodes for hydrogen fuel cell applications. We observed that the incorporation of such a polymer, characterised by both electronic and ionic conductivity, associated with a catalyst in a 3D porous network, could lead to an increased probability of the three‐phase contact to occur. In this context, aniline was mixed with functionalised platinum nanoparticles and used as the precursor. The role of these functionalised nanoparticles was not only to act as the catalyst for fuel cell purposes, but also as nucleation sites promoting the formation of the nanofibrous pPANI thin film during the plasma polymerisation. The morphology of the thin film was analysed by scanning electron microscopy and the efficiency, in terms of energy conversion, was assessed in a single fuel cell test bench.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call