Abstract

Abstract The physical processes that govern eyewall replacement cycles (ERCs) in tropical cyclones (TCs) are not yet fully understood. In particular, asymmetric structures within the TC inner core have an uncertain role in ERC dynamics. This study analyzes the kinematic and precipitation asymmetric structures during successive ERCs in Hurricane Ivan (2004) using airborne Doppler radar observations. The azimuthal locations of these asymmetries are analyzed relative to the deep-layer (850–200 hPa) environmental wind shear vector. Two ERCs were analyzed at different stages of their evolution. During the concentric eyewall stage of the first ERC, the outer eyewall updrafts were strongest in the left-of-shear half, which also coincided with mesoscale descending inflow (MDI) just radially outward. Enhanced low-level convergence, updrafts, and MDI were collocated in a zone spiraling inward toward the strongest outer eyewall updrafts, suggesting that the vertical velocity asymmetry in the outer eyewall was possibly forced by a stratiform-induced cold pool similar to MDI impacts seen in past TC studies. During the final stage of the second ERC, the outer eyewall (now the singular primary eyewall) experienced an upwind shift in the precipitation and vertical velocity asymmetries. The updraft maximum shifted from the downshear-left quadrant to the downshear-right quadrant, and the precipitation maximum (downwind of the updraft maximum) shifted from left-of-shear to the downshear direction. This shift corroborates previous studies, which hypothesize that at the end of an ERC, the forcing mechanism that drives the eyewall vertical velocity asymmetry transitions from MDI/cold-pool processes to direct interaction with the environmental wind shear.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.