Abstract

We compare the vortex evolutions of eyewall replacement cycles (ERCs) between the sea-surface and the free-atmosphere levels and investigate the asymmetric structure of concentric eyewalls (CEs) by examining a combination of aircraft observations and surface wind fields derived from C-band spaceborne synthetic aperture radar (SAR) images during Hurricane Irma (2017) from 4 September 2017 to 8 September 2017. A total of 116 radial wind profiles measured by an aircraft were collected and showed that ERCs occur at both the sea-surface and the free-atmosphere levels. The outer eyewall was shown to form at the free atmospheric level (~3 km) with a narrow structure at the sea-surface level and an outward tilt with height in the cross-section. In our study, four ERC events were determined from wind profile parameters fitted by a modified Rankine vortex model, which was validated by 328 radial legs collected from six hurricanes. The outer eyewall did not replace the inner eyewall at the sea-surface level in the third ERC, due to the maintenance of a short duration and intense original eyewall. Additionally, Irma’s intensity weakened during the fourth ERC rather than re-intensified, because of the generation of a third wind maximum outside the secondary eyewall. Comparisons of five SAR-derived surface wind fields in Irma and another two hurricane cases illustrated that the location of the secondary eyewall generation is a key point in the interpretation of anomaly intensity changes in the fourth ERC.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call