Abstract

Abstract Hurricane Bonnie (1998) was an unusually resilient hurricane that maintained a steady-state intensity while experiencing strong (12–16 m s−1) vertical wind shear and an eyewall replacement cycle. This remarkable behavior was examined using observations from flight-level data, microwave imagery, radar, and dropsondes over the 2-day period encompassing these events. Similar to other observed eyewall replacement cycles, Bonnie exhibited the development, strengthening, and dominance of a secondary eyewall while a primary eyewall decayed. However, Bonnie’s structure was highly asymmetric because of the large vertical wind shear, in contrast to the more symmetric structures observed in other hurricanes undergoing eyewall replacement cycles. It is hypothesized that the unusual nature of Bonnie’s evolution arose as a result of an increase in vertical wind shear from 2 to 12 m s−1 even as the storm intensified to a major hurricane in the presence of high ambient sea surface temperatures. These circumstances allowed for the development of outer rainbands with intense convection downshear, where the formation of the outer eyewall commenced. In addition, the circulation broadened considerably during this time. The secondary eyewall developed within a well-defined beta skirt in the radial velocity profile, consistent with an earlier theory. Despite the large ambient vertical wind shear, the outer eyewall steadily extended upshear, supported by 35% larger surface wind speed upshear than downshear. The larger radius of maximum winds during and after the eyewall replacement cycle might have aided Bonnie’s resiliency directly, but also increased the likelihood that diabatic heating would fall inside the radius of maximum winds.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call