Abstract

Carbon defects coupled with heteroatoms can asymmetrically rearrange the local electronic distribution and coordination environment of active sites, improving the catalytic selectivity and activity of a two-electron oxygen reduction reaction (2eORR). In this study, an asymmetry defective carbon (asy-DC) structure using wolfberry as the carbon source is employed to adjust the charge distribution of active sites with different degrees of asymmetry caused by N→S coordination bonds. The asymmetric region exhibits a considerable positive correlation between the asymmetry degree and adsorption energy for OOH*, presenting a volcano relation between the asymmetry degree and catalytic activity. The optimised asy-DC catalyst exhibits high selectivity and reliable activity after 12 h of stability testing. This study can provide a new reference into the origin of ORR activity and selectivity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.