Abstract
Simple SummaryMelatonin is a known antioxidant and anti-inflammatory regime, while in sheep it is broadly used to accelerate the onset of the breeding season. Our recent study showed that melatonin administration during pregnancy in heat-stressed ewes improved fertility rate and number of lambs born per ewe, the redox status of the maternal organism and the produced milk quantity until weaning. In this study, we present the impact of melatonin administration in stressed ewes during pregnancy considering: (a) humoral response of both maternal organism and offspring during the first two days after parturition, (b) chemical composition and antioxidant parameters of colostrum and milk until weaning and (c) redox status of the offspring until weaning. The results indicated that melatonin improved the redox status of the offspring and the quality of colostrum. Moreover, melatonin could be administered as immune-modulatory regime, apart from antioxidant, in prenatally stressed offspring in order to cope with the crucial first days of their life, as the humoral response results suggested.In this study, the effects of melatonin treatment on growth, redox status and immunity in prenatally stressed newborn lambs were evaluated. Thirty-seven newborn lambs were allocated into two groups (melatonin-MEL and control-CON), based on whether their mothers were treated with melatonin implants or not, respectively. All pregnant ewes were exposed to heat stress. The body weight of lambs was recorded at birth (L0), and then on days 15 (L15) and 40 (L40). Redox biomarkers [total antioxidant capacity (TAC), glutathione (GSH), thiobarbituric acid reactive substances (TBARS)] were assayed in blood samples collected from lambs on days L0, L1, L2, L5, L10 and L40. Chemical analysis and antioxidant capacity were evaluated in colostrum and milk samples collected at the same time points with blood samples. Cytokines (IL-1β, IL-6, IL-10, IFN-γ) and immunoglobulin (IgG) were assayed in blood and colostrum samples collected from ewes on days L0 and L1, and in lambs’ blood on days L0, L1 and L2. The results revealed that body weight gain of newborn lambs did not differ between the two groups (p > 0.05). Better redox status was found in MEL lambs until L2, as well as higher antioxidant capacity in the colostrum of MEL ewes compared to CON ones on day L0 (p < 0.05). In MEL ewes’ colostrum, higher protein content was measured on day L0 and higher fat content on L1 compared to CON group (p < 0.05). The highest level of IL-6 was found in MEL ewes on L1, with a concomitant increase of IL-10 level in MEL lambs in comparison to CON lambs on L2. Moreover, CON colostrum resulted in a higher level of IL-10 within time, coupled with an increased level of IgG found in lambs’ plasma on L2 (p = 0.04). This study indicated that melatonin could be administered as antioxidant and immune-modulatory regime in prenatally stressed offspring in order to cope with the crucial first days of their life. This effect of melatonin was also amplified by crosstalk between IL-6, IL-10 and IgG production, resulting in an improved quality of produced milk.
Highlights
Several studies have considered the long-term consequences of early life events on physiological processes linked to animal production
A total of 37 Karagkouniko breed lambs were included in the study and allocated into two groups, melatonin group (MEL) (n = 18) lambs’ group and control group (CON) (n = 19) lambs’ one, based on whether their mothers had been treated with melatonin implants during pregnancy or not, respectively
Melatonin treatment prenatally probably assisted the newborn lambs in overcoming the oxidative stress connected to birth by supporting the antioxidant defences, reducing ROS production in lambs’ plasma and improving the free radical scavenger capacity of colostrum
Summary
Several studies have considered the long-term consequences of early life events on physiological processes linked to animal production. A number of insults, such as maternal nutritional perturbations, heat stress and inflammation have been recognised as prominent causes of developmental programming [2,3], inducing, directly or indirectly, an inhibitory effect on the innate immunity of the offspring [1]. Perturbations to the emerging immune system might have long-term consequences in the physiology and disease risk of the offspring due to programming effects [4,5]. The critical developmental stages of vulnerability of the immune system to environmental programming have not been elucidated so far and probably vary between different species [5]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.