Abstract
Phosphogypsum (PG) is a solid by-product of the phosphate industry, rich in contaminants and produced in large quantities. Raw materials and stabilized specimens, consisting of bentonite-lime-PG mixtures, were characterized by mineralogical, microstructural, chemical, alpha-particle, and gamma-ray spectrometry analysis before hydration and after hardening. Compressive strength and leaching tests were performed on hardened specimens. The physicochemical parameters and chemical composition of leachates from raw materials and hardened specimens were determined. PG contains high concentrations of natural radionuclides, specially from U series. Uranium-238 activities are double in PG than the worldwide average for soil values. The mobility of PTEs from PG is Cd (2.43%), Zn (2.36%), Ni (2.07%), Cu (1.04%), Pb (0.25%), and As (0.21%). Cadmium is the cation most easily released by PG in water with a concentration 0.0316mgkg-1. When PG is added to bentonite-lime mixture, cadmium is no longer released. The radionuclide 238,234U and 210Po predominates in the leachates of PG. However, the activity of 210Po becomes negligible in the leachates of bentonite-lime-PG mixtures. The addition of PG to bentonite-lime mixtures facilitates the trapping of trace elements (PTEs) and radionuclides, providing potential applications for PG as road embankments and fill coatings.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have