Abstract

Salmonella is a zoonotic bacterium that is considered to be one of the most common causes of foodborne infections worldwide. Bearing in mind the genes involved in its virulence, identifying these genes can enable experts to better understand bacterial pathogenicity, which could subsequently help develop more efficient means to control and prevent infections. This study aimed to analyze stn, sipB, and sopB genes in various Salmonella serovars. To carry out this study, 103 Salmonella serovars were extracted from livestock, poultry, and humans from existing samples at the Department of Microbiology of the Razi Serum and Vaccine Research Institute in Karaj, Iran. These samples were cultured in selection and differential media, and their serovars were identified using specific antibodies based on Kaufman-White Tables. Utilizing PCR and specific primers, stn, sopB, and sipB genes were detected among these serovars. In this investigation, the most common human serovars were Salmonella paratyphi A, Salmonella paratyphi B, and Salmonella enteritidis; the most common serovars among livestock consisted of Salmonella dublin and Salmonella typhimurium and the most common Salmonella serovars among poultry consisted of Salmonella infantis and Salmonella enteritidis. The results of PCR on stn, sipB, and sopB genes demonstrated segments with 617bp, 875 bp, and 220 bp on agar gel, respectively. Based on the obtained findings, stn, sipB, and sopB genes were detected in 96.11%, 99.02%, and 98.05% of Salmonella serovars, respectively. Considering the fact that the aforementioned genes play significant roles in bacterial virulence, they can be used to develop diagnostic ELISA kits and recombinant vaccines.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call