Abstract
The genus Aeromonas is a widespread pathogen that includes more than 30 Gram-negative species, many of which are opportunistic bacteria. Aeromonas species are naturally distributed in various aquatic sources. Infectious processes in marine animals such as fish usually develop under stressful conditions, and when their immune systems are weakened. MicroRNAs (miRNAs/miRs) are short, non-coding RNAs that post-transcriptionally regulate gene expression. Their diverse biological functions, such as influencing cell development, proliferation, differentiation, tumorigenesis, metabolism, and apoptosis have been studied in various animals. Fish is the most important source of aquatic nutrients throughout the world, and its market is constantly growing. Overpopulation in aquaculture brings infectious diseases that threaten the development of aquaculture around the world. There is extensive evidence that microRNAs are involved in modulating infectious processes and regulating the inflammatory response to major bacterial fish infections, including Aeromonas. Here, we review the current literature on the fish microRNA repertoire and outline the physiological roles assigned to microRNAs to provide a foundation for future research during Aeromonas infection. Understanding the interaction between microRNAs and Aeromonas may provide clues to a remarkable strategy for preventing Aeromonas infections in fish.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have