Abstract
A continuously discharged dissolved conservative tracer was simulated with the Chesapeake Bay Estuary Model Package to study pollutant transport in the estuary in response to point source loads and the impact of the November, 1985 storm. A visualization technology is applied to show 3-dimensional concentration variations in a continuous daily time sequence. The differential responses of daily net transport during storms versus inter-storm periods can be observed from an MPEG movie. It may take 2–3 months for a tracer to travel from the fall-line to the mouth of a river during relatively dry seasons, only 2 weeks in some medium storms, and less than 5 days in a big storm. Plots of daily concentrations from eleven selected locations in the estuary provide quantitative information on the response of tracer concentration to flows. The magnitude and time of tracer peaks related with different weather events in these locations reflect the combined effects of flows from various directions to these locations. The lower tributaries (which are closer to the Bay mouth) are affected more than the upper tributaries by a source discharged at a mid-tributary. A storm can transport materials more effectively to the Bay and affect adjacent tributaries more severely.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have