Abstract

Prebiotics include nondigestible carbohydrate dietary additives and other biological components that stimulate the growth of one or more types of bacteria in the gastrointestinal tract that are beneficial to the host. These bacteria can inhibit colonization of pathogenic bacteria by producing antimicrobial substances and competing for niches within the gut. In this study, we evaluated the effects of Biolex® MB40 and Lieber® ExCel which are commercial prebiotics derived from brewer’s yeast cell walls. The two prebiotics were added to Genetically Modified Organism (GMO)- free chicken feeds with each group consisting of 1) control (no prebiotic), 2) Biolex® MB40 with 0.2% and 3) Leiber® ExCel with 0.2%. Feeds were supplemented with the prebiotics during the 8 weeks of the entire experimental period. At 8 weeks, a total of 15 birds from each group were randomly selected for necropsy. The PCR-based Denaturing Gradient Gel Electrophoresis (PCR-based DGGE) technique was utilized to compare microbial populations in control and treatment groups. Feeds supplemented with either Biolex® MB40 or Leiber® ExCel prebiotics exhibited more consistent microbial populations (i.e. relatedness) compared to the control group. For Biolex® MB40 supplemented group, all samples were clustered with over 74% of relatedness. The Leiber® ExCel supplemented group exhibited 77% relatedness among 4 samples with the exception of one outlier. According to sequencing results, Bacteriodes salanitronis were consistently detected in all groups, and Barnesiella ciscericola and Firmicutes were identified in both treatment groups. In addition, the class 1 integron gene prevalence was evaluated and frequencies of 93.3% for the control, 73.3% for the Biolex® MB40 and 73.3% for the Leiber® ExCel treatment group of chickens were observed. Last, Campylobacter concentrations were significantly lower in both treatment groups compared to the control group.

Highlights

  • Prebiotics have been used as alternative feed additives to improve gut health as well as for reducing pathogen colonization in various animal production systems including poultry [1,2,3,4]

  • Based on the above information, here we investigate the effects of two commercial prebiotics originated from yeast cell walls on both the normal microflora and pathogen carriage in pasture raised chickens in order to identify potential microbial population shifts and class 1 integron gene frequencies

  • There was no significant difference in Feed Conversion Ratio (FCR) between control and treatment groups (Table 1)

Read more

Summary

Introduction

Prebiotics have been used as alternative feed additives to improve gut health as well as for reducing pathogen colonization in various animal production systems including poultry [1,2,3,4]. Prebiotics include nondigestible carbohydrate dietary additives and other biological components that stimulate the growth of one or more bacteria in the gastrointestinal tract that are beneficial to the host [5]. The presence of prebiotics can lead to the maintenance of a normal microbial population [10] which in turn can potentially inhibit the colonization of pathogenic bacteria through competitive inhibition [8,13]. The prebiotic compounds that are derived from yeast cell walls include beta-D-glucan and Mannan-Oligosaccharides (MOS) and these have been evaluated for their impact on poultry gut microflora [1,14,15]

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.