Abstract

Recent studies have reported that seasonal variation in camera-based indices that are calculated from the digital numbers of the red, green, and blue bands (RGB_DN) recorded by digital cameras agrees well with the seasonal change in gross primary production (GPP) observed by tower flux measurements. These findings suggest that it may be possible to use camera-based indices to estimate the temporal and spatial distributions of photosynthetic productivity from the relationship between RGB_DN and GPP. To examine this possibility, we need to investigate the characteristics of seasonal variation in three camera-based indices (green excess index [GE], green chromatic coordinate [rG], and HUE) and the robustness of the relationship between these indices and tower flux-based GPP and how it differs among ecosystems. Here, at a daily time step over multiple years in a deciduous broad-leaved and an evergreen coniferous forest, we examined the relationships between canopy phenology assessed by using the three indices and GPP determined from tower CO2 flux observations, and we compared the camera-based indices with the corresponding spectra-based indices estimated by a spectroradiometer system. We found that (1) the three camera-based indices and GPP showed clear seasonal patterns in both forests; (2) the amplitude of the seasonal variation in the three camera-based indices was smaller in the evergreen coniferous forest than in the deciduous broad-leaved forest; (3) the seasonal variation in the three camera-based indices corresponded well to seasonal changes in potential photosynthetic activity (GPP on sunny days); (4) the relationship between the three camera-based indices and GPP appeared to have different characteristics at different phenological stages; and (5) the camera-based and spectra-based HUE indices showed a clear relationship under sunny conditions in both forests. Our results suggest that it might be feasible for ecologists to establish comprehensive networks for long-term monitoring of potential photosynthetic capacity from regional to global scales by linking satellite-based, in situ spectra-based, and in situ camera-based indices.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.