Abstract
BackgroundDrug metabolism and pharmacokinetic (DMPK) assessment has come to occupy a place of interest during the early stages of drug discovery today. Computer-based methods are slowly gaining ground in this area and are often used as initial tools to eliminate compounds likely to present uninteresting pharmacokinetic profiles and unacceptable levels of toxicity from the list of potential drug candidates, hence cutting down the cost of the discovery of a drug.ResultsIn the present study, we present an in silico assessment of the DMPK profile of our recently published natural products database of 1,859 unique compounds derived from 224 species of medicinal plants from the Cameroonian forest. In this analysis, we have used 46 computed physico-chemical properties or molecular descriptors to predict the absorption, distribution, metabolism and elimination (ADME) of the compounds. This survey demonstrated that about 50% of the compounds within the Cameroonian medicinal plant and natural products (CamMedNP) database are compliant, having properties which fall within the range of ADME properties of >95% of currently known drugs, while >73% of the compounds have ≤2 violations. Moreover, about 72% of the compounds within the corresponding ‘drug-like’ subset showed compliance.ConclusionsIn addition to the previously verified levels of ‘drug-likeness’ and the diversity and the wide range of measured biological activities, the compounds in the CamMedNP database show interesting DMPK profiles and, hence, could represent an important starting point for hit/lead discovery from medicinal plants in Africa.
Highlights
Drug metabolism and pharmacokinetic (DMPK) assessment has come to occupy a place of interest during the early stages of drug discovery today
Compounds with unfavourably predicted pharmacokinetic profiles are either completely dismissed from the list of potential drug candidates or the drug metabolism and pharmacokinetics (DMPK) properties are ‘fine tuned’ in order to improve their chances of making it to clinical trials [28]
We have presented a database of 1,859 compounds derived from the Cameroonian flora, Cameroonian medicinal plant and natural products (CamMedNP), the compounds being predicted to be sufficiently orally available and diverse to be employed in lead discovery programs [29]
Summary
We present an in silico assessment of the DMPK profile of our recently published natural products database of 1,859 unique compounds derived from 224 species of medicinal plants from the Cameroonian forest. In this analysis, we have used 46 computed physico-chemical properties or molecular descriptors to predict the absorption, distribution, metabolism and elimination (ADME) of the compounds. About 72% of the compounds within the corresponding ‘drug-like’ subset showed compliance
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.