Abstract
ABSTRACT Land Use and Cover Change (LUCC) has emerged as a primary driver of terrestrial carbon storage changes. However, the contributions of LUCC to Above-Ground Carbon (AGC) storage in subtropical forests remain unclear due to the complex and diverse LUCC trajectory. Quantitative assessment of the impact of different LUCC trajectories on carbon storage is essential for regional carbon cycle mechanisms. Therefore, this study focuses on Zhejiang Province, a representative subtropical forest region in China, to accurately assess the contribution of LUCC to AGC storage changes from 1984 to 2019. We first mapped the land cover patterns using the random forest and spatiotemporal filtering algorithm and then applied these patterns to drive an optimized BIOME-BGC model to simulate the spatiotemporal distribution of AGC density. Finally, the LUCC trajectories were classified into three categories: afforestation, deforestation, and forest type transformations. Their contributions to AGC changes were isolated and analyzed through the trajectory analysis. The results demonstrated that the forest area of Zhejiang Province increased from 5.35 × 106 ha to 6.83 × 106 ha (+27.66%) and the total forest AGC storage increased from 80.52 Tg C to 124.16 Tg C (+54.19%) between 1984 and 2019. The increase in forest AGC due to LUCC amounted to 31.26 Tg C, contributing 71.63% to the total. Specifically, the afforestation, deforestation, and forest type transformations contributed 82.37%, −17.27%, and 6.53% to the change in AGC, respectively. Overall, the afforestation within the LUCC trajectories was the primary contributing factor to the growth of forest AGC in Zhejiang Province from 1984 to 2019. This study obtained accurate LUCC and AGC data, clarifying the contribution of different LUCC trajectories and providing a better understanding of the responses of the forest carbon storage to LUCC dynamics.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have