Abstract

One of the entry routes of arsenic (As) into the food chain is through the consumption of edible parts of crops contaminated by this element. Different plant species present distinctive As accumulation and tolerance capacities. These differences are also influenced by As availability and speciation in soils. This study assessed the effect of As contamination on plant emergence and initial growth, as well as on accumulated As contents in different crops grown in tropical soils. In addition, it was intended to verify the protection level of the current soil As prevention value adopted in Brazil, which should be applicable for conceivably other tropical soils in Latin America. Plants of maize, rice, sorghum, common bean, sunflower, and radish were cultivated in two different tropical soils (Oxisol and Inceptisol) and in a standard substrate (tropical artificial soil - TAS) dosed with As (0; 8; 14.5; 26; 46.5; 84; 150; 270 mg kg−1). Early germination, total dry mass, As content, and bioconcentration factor were evaluated. The EC20 and EC50 values (the As concentration for 20% or 50% of effect relative to control treatment) based on total As concentration were more variable among different soils than the corresponding EC20 and EC50 values based on extractable (phytoavailable) As concentration. From the studied species, common bean was the most sensitive and maize was the least sensitive to As. Those species were the ones that accumulated the lowest As levels in shoot tissues. Arsenic concentrations measured in plant tissues and estimated bioaccumulation factors were not related to relative As toxicity among species. Data obtained suggest that the current Brazilian prevention value for arsenic is adequate for soils with high arsenic adsorption capacity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call