Abstract
Hybrid organic–inorganic perovskites have emerged as cost-effective and high-performance semiconductors for optoelectronic applications. Precise knowledge of charge carrier mobility and especially the temperature dependence of mobility is therefore of utmost relevance for advancing high-performance materials. Here, the charge carrier mobility in methylammonium lead iodide single crystals is investigated with time of flight technique from 290 to 100 K. A nondispersive transport with an electron mobility of 135 (±20) cm2/V s and a hole mobility of 90 (±20) cm2/V s is obtained at room temperature. A power-law temperature dependence of mobility, μ ∝ Tm, with an exponent m = −2.8 and −2.0, is measured for electrons and holes in the tetragonal phase. The highest electron and hole mobilities measured are 635 (±70) and 415 (±20) cm2/V s, respectively. Our results indicate that the scattering of charge carriers with phonons is the limiting factor for carrier mobilities at room temperature.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have