Abstract
Enhancing the performance, safety and reliability of battery management systems is crucial for advancing the state of the art in battery electric vehicles. Current research explores the potential of ultrasound to monitor state of charge (SoC) changes in individual cells. Understanding spatial variations in SoC is essential, as non-uniformities could lead to sub-optimal performance, premature ageing, and possible safety risks. This study uses ultrasound immersion C-scans to map wave speed and attenuation at different SoC levels during battery cycling. Results indicate non-uniform wave speed and attenuation suggestive of SoC spatial variations within single cells, emphasising the importance of addressing this issue. Acoustic measurements under various C-rates and relaxation periods are discussed, providing insights into lithium-ion rearrangement in graphite particles. Potential causes of structure and manufacturing variations of the cell are discussed, highlighting the need to address these issues to prevent overcharging or overdischarging in specific battery areas.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have