Abstract
With increasing global trade and frequent occurrence of disruptive events, the resilience of port clusters has emerged as a critical area of concern. However, studies that focus on the resilience of port clusters considering their complex network structure and operational dynamics remain limited. This study proposes a novel model to assess port cluster resilience by integrating hypergraph-based modeling and agent-based simulation. The model captures the complex relationships among ports and vessels, enabling the dynamic modeling of disruption impacts on port cluster resilience. A case study of the Guangdong-Hong Kong-Macao Greater Bay Area (GBA) port cluster demonstrates the model’s applicability and effectiveness. Additionally, the significant impact of typhoon duration on resilience and the potential benefits of vessel port skipping behavior and port cargo handling capacity improvements are analyzed. These findings provide valuable insights for stakeholders in developing effective strategies to enhance the resilience of port clusters and the maritime transportation system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.