Abstract

Although situated close together within the T-cell receptor (TCR) alpha/delta locus, TCR delta and TCR alpha gene segments are controlled by two developmental stage-specific enhancers and are activated according to distinct developmental programmes. We previously used a stable transfection colony assay to identify an enhancer-blocking element, blocking element alpha/delta-1 (BEAD-1), between the TCR delta and alpha gene segments of the human TCR alpha/delta locus. We hypothesized that enhancer-blocking by BEAD-1 might be required to prevent the TCR delta enhancer from activating TCR alpha gene segment transcription and rearrangement at the double negative stage of thymocyte development. Here, we used a transfection approach to define partial enhancer-blocking activity in an analogous position of the murine TCR alpha/delta locus. To test the functional significance of this activity in vivo, we used gene targeting to delete the region from the endogenous locus. We found no perturbation of TCR delta and TCR alpha gene expression and rearrangement on targeted alleles, indicating that enhancer-blocking activity in this region is not required to maintain the developmentally distinct activation profiles of the two genes. We suggest that appropriate regulation may be achieved as a result of intrinsic biases in enhancer-promoter interactions or a developmental stage specificity to promoter function that is distinct from any additional specificity imposed by the enhancers themselves.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.